(.00000075)-(0.000038x)-(4x^2)=0

Simple and best practice solution for (.00000075)-(0.000038x)-(4x^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (.00000075)-(0.000038x)-(4x^2)=0 equation:


Simplifying
(0.00000075) + -1(0.000038x) + -1(4x2) = 0
0.00000075 + -1(0.000038x) + -1(4x2) = 0

Remove parenthesis around (0.000038x)
0.00000075 + -1 * 0.000038x + -1(4x2) = 0

Multiply -1 * 0.000038
0.00000075 + -0.000038x + -1(4x2) = 0

Remove parenthesis around (4x2)
0.00000075 + -0.000038x + -1 * 4x2 = 0

Multiply -1 * 4
0.00000075 + -0.000038x + -4x2 = 0

Solving
0.00000075 + -0.000038x + -4x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-4 the coefficient of the squared term: 

Divide each side by '-4'.
-0.0000001875 + 0.0000095x + x2 = 0

Move the constant term to the right:

Add '0.0000001875' to each side of the equation.
-0.0000001875 + 0.0000095x + 0.0000001875 + x2 = 0 + 0.0000001875

Reorder the terms:
-0.0000001875 + 0.0000001875 + 0.0000095x + x2 = 0 + 0.0000001875

Combine like terms: -0.0000001875 + 0.0000001875 = 0.0000000000
0.0000000000 + 0.0000095x + x2 = 0 + 0.0000001875
0.0000095x + x2 = 0 + 0.0000001875

Combine like terms: 0 + 0.0000001875 = 0.0000001875
0.0000095x + x2 = 0.0000001875

The x term is 0.0000095x.  Take half its coefficient (0.00000475).
Square it (0.0000000000225625) and add it to both sides.

Add '0.0000000000225625' to each side of the equation.
0.0000095x + 0.0000000000225625 + x2 = 0.0000001875 + 0.0000000000225625

Reorder the terms:
0.0000000000225625 + 0.0000095x + x2 = 0.0000001875 + 0.0000000000225625

Combine like terms: 0.0000001875 + 0.0000000000225625 = 0.0000001875225625
0.0000000000225625 + 0.0000095x + x2 = 0.0000001875225625

Factor a perfect square on the left side:
(x + 0.00000475)(x + 0.00000475) = 0.0000001875225625

Calculate the square root of the right side: 0.000433039

Break this problem into two subproblems by setting 
(x + 0.00000475) equal to 0.000433039 and -0.000433039.

Subproblem 1

x + 0.00000475 = 0.000433039 Simplifying x + 0.00000475 = 0.000433039 Reorder the terms: 0.00000475 + x = 0.000433039 Solving 0.00000475 + x = 0.000433039 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.00000475' to each side of the equation. 0.00000475 + -0.00000475 + x = 0.000433039 + -0.00000475 Combine like terms: 0.00000475 + -0.00000475 = 0.00000000 0.00000000 + x = 0.000433039 + -0.00000475 x = 0.000433039 + -0.00000475 Combine like terms: 0.000433039 + -0.00000475 = 0.000428289 x = 0.000428289 Simplifying x = 0.000428289

Subproblem 2

x + 0.00000475 = -0.000433039 Simplifying x + 0.00000475 = -0.000433039 Reorder the terms: 0.00000475 + x = -0.000433039 Solving 0.00000475 + x = -0.000433039 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.00000475' to each side of the equation. 0.00000475 + -0.00000475 + x = -0.000433039 + -0.00000475 Combine like terms: 0.00000475 + -0.00000475 = 0.00000000 0.00000000 + x = -0.000433039 + -0.00000475 x = -0.000433039 + -0.00000475 Combine like terms: -0.000433039 + -0.00000475 = -0.000437789 x = -0.000437789 Simplifying x = -0.000437789

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.000428289, -0.000437789}

See similar equations:

| 10=m-32 | | 5a^4-9a^3+4a^4= | | 7x+3y= | | 5000/x^2=-2 | | 2h-1=3 | | 5x+y=80 | | -10b^2-3b^2= | | 4x+8=-18 | | -7y+4(y+8)=35 | | 5x-3x-2x=18 | | 6x+4y=100 | | 100x-10x=65 | | 1/18c=31 | | 5m-6=14 | | x=11-3y | | .3M=0.4m-0.5 | | 4x+11=-x+1 | | 100x-10x=75 | | 28=a/13 | | 4=6-2n | | (4x+10)-(20-5x)= | | 9x(x+6y+2z)= | | x/5.1=16 | | 100x-10x=31 | | 3w+1=7 | | 6(1+2b)=6b-24 | | 3(5-4x)= | | X^4=41 | | 4-2j=2 | | ln(5x-6)=1.34 | | 14+b=21 | | -3(4y)+y=-1 |

Equations solver categories